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Planar cell polarity (PCP) signaling is essential in determining the polarity of cells within the plane of an
epithelial sheet. Core PCP genes have been recently shown to control the global polarization of hair follicles in
mice. Fuz, a homologue of the Drosophila PCP effector gene, fuzzy, is critical in ciliogenesis in vertebrates,
and is required for the development of a wide range of organs in mice. Here, we report that disruption of the
Fuz gene in mice severely blocked the development of hair follicles in the skin. In contrast to the loss of hair
follicle polarization in mice deficient in core PCP genes, hair follicles in mice lacking the Fuz gene retained their
typical anterior–posterior orientation. We show that disruption of Fuz impaired the formation of primary cilia
and the hedgehog signaling pathway in the skin. In addition, using skin grafts and skin reconstitution assays
we demonstrate that the expression of Fuz is required in both epidermal and dermal cells and that the
formation of primary cilia is a cell-autonomous process that does not require cross talk between the epithelia
and mesenchymal compartments during hair follicle formation.
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INTRODUCTION
The development of multicellular structures, such as the
hair follicle of mammals, requires specification of both cell
fate and cell polarity in a precisely controlled temporal
and spatial manner (Wang and Nathans, 2007; Strutt and
Warrington, 2008; Schneider et al., 2009). Planar cell
polarity (PCP) proteins exert critical effects in the determina-
tion of cell polarity within an epithelial plane, acting on both
subcellular and multicellular structures to determine local

and global polarization of tissues and organs along body axes
(Wang and Nathans, 2007). The hair follicle is an ideal
multicellular appendage of the skin that can be used to study
PCP functions in skin pattern formation.

PCP genes have been extensively studied in Drosophila
melanogaster. Drosophila PCP genes are grouped as core
PCP genes and tissue-specific PCP effector genes. Core PCP
genes include frizzled (fz), dishevelled (dsh), prickle (pk),
diego (dgo), strabismus (stbm, or Van Gogh (Vang)), and
flamingo (fmi, or starry night (stan)). PCP effector genes
include inturned (in), fuzzy (fy), fritz (frtz), multiple wing hairs
(mwh), and nemo (nmo) (Wong and Adler, 1993; Klein and
Mlodzik, 2005; Zallen, 2007; Strutt and Warrington, 2008).
In vertebrates, PCP genes participate in convergent extension,
neural tube closure, eyelid closure, inner ear sensory cell hair
bundle orientation, and hair follicle orientation (Wang and
Nathans, 2007). Disruption of core PCP genes usually results
in extensive and severe defects in these processes (Jones and
Chen, 2007; Wang and Nathans, 2007; Simons and Mlodzik,
2008). Mutations in PCP effector genes generally result in
more subtle defects (Lee and Adler, 2002; Park et al., 2006).
Therefore, unlike core PCP genes, PCP effector genes may
function more locally.

PCP genes provide one of the earliest developmental
cues to govern epidermal and hair follicle morphogenesis
(Fuchs, 2007). Core PCP genes have been implicated in
the development of pelage hair in mice. Mutations in genes
encoding these proteins resulted in disruption of hair follicle
polarization in mice (Guo et al., 2004; Devenport and Fuchs,
2008; Ravni et al., 2009). However, to date, there are no
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reports describing the effects of PCP effector genes on hair
follicle formation in mice.

Fuzzy (fy) is a member of the tissue-specific PCP effector gene
family (Simons and Mlodzik, 2008). In Drosophila,
fy specifies wing hair initiation site and orientation, and is
involved in cytoskeleton maintenance to control wing hair
number (Collier and Gubb, 1997). Disruption of the fuzzy
homologues in vertebrate animals resulted in a number of deve-
lopment defects (Park et al., 2006; Gray et al., 2009; Heydeck
et al., 2009), such as neural tube closure defects, disruption of
dorsal–ventral patterning of the spinal cord, and disruption of
anterior–posterior patterning of the limb buds in mice (Gray
et al., 2009; Heydeck et al., 2009), abnormalities often
associated with defects in primary cilia formation and function.

Most cells in vertebrate animals possess a single nonmotile
(primary) cilium. Genes that are involved in PCP functions
are often required for cilia formation (Beales, 2005; Bisgrove
and Yost, 2006; Davis et al., 2006; Singla and Reiter, 2006;
Jones et al., 2008; Veland et al., 2009). In fact, one of the
best-studied PCP genes affecting cilia formation is the fuzzy
gene. Disruption of fuzzy homologues in Xenopus (fuz) and
mice (Fuz) disrupted ciliogenesis (Park et al., 2006; Gray
et al., 2009; Heydeck et al., 2009). Recently, it was shown
that the disruption of another PCP effector gene, Intu, could
also result in defective cilia formation (Zeng et al., 2010).

It is well established that primary cilia are essential for
hedgehog (Hh) signaling during development (Corbit et al.,
2005; Haycraft et al., 2005; Huangfu and Anderson, 2005;
Liu et al., 2005; Rohatgi et al., 2007) and in neoplasia (Han
et al., 2009; Wong et al., 2009; Zhang et al., 2009). Cilia are
critical for hair follicle formation (Lehman et al., 2008, 2009).
Targeted disruption of cilia in dermal fibroblasts resulted in
blockage of hair follicle formation and downregulation of
Hh-responsive genes (Lehman et al., 2009).

To determine if Fuz is required for the formation of hair
follicles, we examined the skin of a mutant mouse model
of Fuz (Gray et al., 2009). Hair follicle development was
remarkably impaired in the absence of Fuz. Both cilia
formation and Hh signaling were inhibited in the skin of
Fuz mutant mice. Interestingly, hair follicle polarization was
not altered in these mutants, suggesting that core PCP genes
and PCP effector genes may have unique roles during hair
follicle formation.

RESULTS
Expression of Fuz in the skin of wild-type and mutant Fuz mice

Transcription levels of the gene in the skin were assessed
using quantitative RT-PCR. Robust expression of Fuz was
detected in both epidermal and dermal cells of wild-type
embryos (Supplementary Figure S1 online). However, in
homozygous mutants, Fuz transcription was undetectable
(Supplementary Figure S1 online). Therefore, this mutant
mouse model is considered to be a null mutation of Fuz
(Fuz�/�) and will be referred to as such.

Number of hair follicles is reduced in Fuz�/� embryonic skin

At early embryonic stages (E15.5) when the first wave of hair
follicles start to form, the number of hair germs in the back

skin of wild-type and Fuz�/� mutants was almost identical
(Figure 1a, b, and e), indicating a normal induction of hair
follicle formation. However, a striking hair follicle phenotype
was observed in Fuz�/� embryos at later developmental
stages (Figure 1c and d). At E18.5, the average number of
hair follicles, irrespective of their differentiation stages, in the
dorsal skin of Fuz�/� embryos was 6.7±2.1 per microscopic
field as compared with 12.5±1.9 in wild-type littermates
(Figure 1e). The skin of heterozygous (Fuzþ /�) mice appeared
indistinguishable from wild-type littermates (data not shown)
and only wild-type data were used as controls.
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Figure 1. Developing hair follicles in dorsal skins of wild-type and

Fuz�/� embryos. (a–d) Representative hematoxylin and eosin staining of

wild-type (a and c) and Fuz�/� (b and d) dorsal skins at E15.5 and E18.5,

respectively. The number of hair follicles is significantly reduced in the

Fuz�/� embryos at E18.5. Of note, hair follicles maintained A-P polarization

in wild-type and Fuz�/� skins. (e) Quantification of E18.5 hair follicles in

Fuz�/� and wild-type skin showed that the average number of hair follicles

of Fuz�/� skin was about half that of wild-type littermates per microscopic

field, irrespective of their differentiation stages (n¼15, Po0.001).

(f, g) Expression of P-cadherin (red) was localized to cells on the anterior

side of hair germs in both wild-type and Fuz�/� skin. Krt14 (green) labeling

shows keratinocytes in the epidermis and hair germ. (h, i) Expression of

Vangl1 (red) remained polarized to the lateral membrane of cells of the

epidermis and invaginating hair germ. DAPI (blue)-stained nucleus.

DAPI, 46-diamidino-2-phenyl indole; A-P, anterior–posterior orientation;

der, dermis; dp, dermal papilla; epi, epidermis; hg, hair germ.

Scale bar¼ 100mm in a–d; 50 mm in f–i.
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Hair follicle polarization of Fuz�/� mutants is similar
to wild type

Histologically, dorsal hair follicles that developed in Fuz�/�

embryos exhibited anterior–posterior polarization, similar to
those of wild types (Figure 1c and d). At the molecular level,
the expression of P-cadherin was restricted to cells at the
anterior aspect of developing hair follicles (Figure 1f and g).
In addition, at E15.5, keratinocytes in both wild-type
(Figure 1h) and Fuz�/�mutants (Figure 1i) exhibited polarized
localization of Vangl1, a core PCP component. Vangl1 was
laterally localized in basal and follicular keratinocytes along
the plane of the epidermis or the growth axis of developing
hair follicles (Figure 1h and i). This result is consistent with

findings in Drosophila where the disruption of a PCP effector
does not normally affect the polarized location of core PCP
components (Adler and Lee, 2001; Lee and Adler, 2002).

Epidermal differentiation is not altered in Fuz�/� skin

The Fuz�/� epidermis looked essentially normal, exhibiting
typical embryonic skin features of the basal, spinous, and
granular layers (Figure 1d). The epidermal stratification
regulator p63 was examined at E14.5. The expression of
p63 was restricted normally to basal cells and hair germs in
wild-type and Fuz�/� skin (Supplementary Figure S2 online).
At E18.5, Krt14 expression was restricted to the basal cells
of both wild-type (Figure 2a) and Fuz�/� skin (Figure 2d).
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Figure 2. Differentiation and proliferation of the epidermis and hair follicle. (a, b, d, and e) Immunofluorescence labeling of Krt14, Krt10, and Lor in the

epidermis of Fuz�/� skin at E18.5 (d and e) revealed almost identical expression patterns of these epidermal differentiation markers as wild-type skin (a and b).

(c and f) Immunofluorescence labeling of Krt71 (red), marker of Henle’s layer of the inner root sheath, showed that some hair follicles have developed past

stage 5 in wild-type embryos (c), whereas there was no evidence of differentiation in the most developmentally advanced dorsal skin hair follicles of

Fuz�/� embryos (f). (g) Distribution of hair follicles in various developmental stages in wild-type (blue) and Fuz�/� (brown) dorsal skins at E18.5 (n¼198 for wild

type; n¼ 126 for Fuz�/�). A majority (53%) of hair follicles in wild-type skin were in stage 4–5, whereas 50% of hair follicles in Fuz�/� skin were at stage 2

or below. (i–j) BrdU labeling of dorsal skin of wild-type (i) and Fuz�/� (j) embryos at E15.5. The interfollicular epidermis of both genotypes showed similar

pattern of BrdU-positive cells. However, the number of BrdU-positive cells within the Fuz�/� hair germs was consistently fewer than that within wild-type hair

germs. Arrows indicate early hair germs (hg). (h) Quantification of BrdU-positive cells in hair germs, n¼ 7. DAPI, 46-diamidino-2-phenyl indole; A-P,

anterior–posterior orientation. Scale bar¼100 mm.
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Early and late differentiation markers, such as keratin 10
(Krt10) and loricrin (Lor), also showed normal expression in
the epidermis of Fuz�/� embryos at E18.5 (Figure 2d and e)
when compared with wild-type littermates (Figure 2a and b).

Hair follicle morphogenesis is delayed in Fuz�/� embryos

Although the induction of hair follicle formation appeared
normal in Fuz�/� mutants (described above), further deve-
lopment of hair follicles was affected in the Fuz�/� mutants.
At late gestation, the majority of sparsely distributed hair
follicles in the dorsal skin of the Fuz�/� embryos appeared to
be at earlier developmental stages in comparison to wild-type
littermates (Figures 1d, 2d–f). In all, 198 wild-type and 126
Fuz�/� hair follicles in the dorsal skin of E18.5 embryos were
analyzed using morphological criteria developed by Paus
et al. (1999). In wild-type skin, 53% of observed follicles
were determined to be in stages 4 and 5. Of note, 6.6% of
wild-type follicles observed had advanced to stage 6 and only
6.1% did not appear to have developed beyond stage 2
(Figure 2g). In contrast, in Fuz�/� skin, 50% of the observed
hair follicles were at stage 2 or earlier and only 7.1% of
Fuz�/� follicles were at stages 4 and 5. We failed to find
any stage 6 hair follicles in Fuz�/� skin (Figure 2g). Therefore,
the morphogenesis of hair follicles in the Fuz�/� embryos
was delayed and arrested at early developmental stages
(stages 2 and 3).

Immunofluorescence labeling with the hair follicle
differentiation marker keratin 71 (Krt71) (Aoki et al., 2001),
which is expressed in the Henle’s layer of the inner root
sheath, showed that no hair follicle in Fuz�/� skin had
progressed to late developmental stages at E18.5 (Figure 2f).
Figure 2f shows the most developmentally advanced Fuz�/�

hair follicle observed in this study with no sign of Krt71
expression. BrdU labeling (Figure 2i and j) showed that at
E15.5, the number of proliferating cells in Fuz�/� hair germs
was fewer than wild type (Figure 2h). This difference persisted
until later stages of hair follicle formation (Supplementary
Figure S3d online). TUNEL assays did not reveal any
difference in the number of apoptotic cells in wild-type
versus Fuz�/� skin (data not shown). The numbers of
proliferating (BrdU-positive) cells in the basal epidermis of
both genotypes were comparable (Figure 2i and j).

Number of primary cilia is reduced in Fuz�/� skin

Primary cilia were labeled with Arl13b and the basal bodies
with g-tubulin. In wild-type skin, at E15.5, cilia were located
on the apical side of keratinocytes, being more prominent
in basal cells (Figure 3a and c). In early hair follicles, cilia
tilted toward the center of hair germs, as the downgrowing
keratinocytes start to form a concentric cell mass (Figure 3c).
As the embryonic skin further matures, primary cilia become
restricted to the basal layer of the epidermis (Figure 3e).
As the basal cells invaginate to form hair germs, which further
elongate to form hair pegs, primary cilia became concen-
trically oriented toward the center of developing hair follicles
(Figure 3e). Primary cilia were also found in dermal fibro-
blasts (Figure 3a and e) and cells of the dermal condensate
(Figure 3a) (Lehman et al., 2009). In contrast, at E15.5, the

number of ciliated epidermal and dermal cells was drama-
tically reduced in Fuz�/� skin (Figure 3b and d). At
E18.5, primary cilia were essentially absent in Fuz�/� skin
(Figure 3f). However, primary cilia were occasionally
observed in Fuz�/� skin (Figure 3d and f, inlet) that ranged
from a relatively normal length to severely stunted. These
observations were confirmed by labeling the primary cilia
with another marker, acetylated a-tubulin (data not shown),
and were consistent with defective ciliogenesis in other cell
types (Gray et al., 2009).

Hedgehog signaling is suppressed in the epidermis of
Fuz�/� embryos

Significant reductions in Ptch1 (P¼0.017) and Gli2
(P¼0.008) expression were observed in Fuz�/� skin when
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Figure 3. Primary cilia in skin of wild-type and Fuz�/� embryos. Primary

cilia were labeled by Arl13b (green), basal bodies were labeled by g-tubulin

(red), and nuclei were labeled by DAPI (blue). (a, b) At E15.5, primary cilia

were evident in both epidermal and dermal cells (open arrows) of wild-type

skin (a). The number of cells containing primary cilia was reduced in

both epidermal and dermal cells of Fuz�/� skin (b). Arrows indicate hair

germs and arrowheads indicate dermal condensate. (c, d) Higher

magnification of wild-type and Fuz�/� hair germs in (a) and (b). Arrows

indicate cilia on cells in the hair germ and open arrows indicate cilia on cells

comprising the dermal condensate. Of note, the majority of Fuz�/� germ cells

and underlying dermal condensate did not have cilia but basal bodies were

present. (e, f) At E18.5, cilia were evident and orientated toward the center of

developing bulbous hair pegs in wild-type skin (e). Primary cilia were

essentially absent from developing pegs of Fuz�/� skin (f). However, cells

with severely truncated cilia exist (inlet in (f), indicated by arrows). Dotted

lines highlight the epidermal–dermal boundary. DAPI, 46-diamidino-2-phenyl

indole; der, dermis; epi, epidermis; hg, hair germ. Scale bar¼100 mm

in (a, b, e and f), 25 mm in (c and d).
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compared with wild-type ones at E15.5 (Figure 4a and b).
A pronounced reduction in Gli1 expression (Po0.001) was
observed at E18.5 (Figure 4c) in Fuz�/� skin. Gli3 expression
was marginally reduced in E18.5 Fuz�/� epidermis (data not
shown). In situ hybridization showed that Ptch1 and
Gli2 were robustly expressed in wild-type hair follicle at
E18.5 (Figure 4d and f), however, their signals were almost
undetectable in Fuz�/� skin (Figure 4e and g). Overall,
disruption of the Fuz gene resulted in suppression of Hh
signaling in the skin. The expression levels of two Wnt target
genes, Axin2 and Lef1, were unchanged in Fuz�/� skins
(data not shown), suggesting a relatively intact canonical Wnt
signaling pathway in Fuz�/� skin, which is consistent with
normal hair follicle induction (Figure 1b).

Hair follicle development is arrested in Fuz�/� skin transplants
To answer the question whether hair follicle development is
delayed or arrested in the Fuz�/� mutants, we transplanted
dorsal skins of E18.5 wild-type and Fuz�/� mutants to nude
mice to allow further development. At 3 weeks after
transplantation, a remarkable number of hairs formed
on wild-type skin transplants (Figure 5a). In contrast, there
were only a few short hairs that developed at the edge
of pigmented Fuz�/� transplants (Figure 5b). Histological
examination showed that anagen hair follicles developed
across the entire wild-type skin transplant (Figure 5c),
however, most of the hair follicles present in the Fuz�/�

transplants were abnormally developed with a few

well-developed hair follicles present at the edge of the
Fuz�/� transplants (Figure 5d; also see Discussion). Immuno-
fluorescence examination showed that only a fraction of cells
in the bulb region of these well-developed Fuz�/� hair
follicles were ciliated (Figure 5g). These mutant hair follicles
were able to differentiate further to express Krt71 (Figure 5h).
The epidermis of Fuz�/� transplants looked normal with
normal expression patterns of differentiation markers such
as Lor (Figure 5j).

Both epidermal and dermal cells require Fuz for hair follicle
formation

Because Fuz is expressed in both epidermal and dermal cells,
it was of interest to determine whether hair follicle formation
required the expression of Fuz in both cell types. Therefore,
we generated skin grafts that were reconstituted with different
combinations of primary keratinocytes and fibroblasts iso-
lated from either wild-type or Fuz�/� skin onto nude mice. At
4 weeks after grafting, skin reconstituted with wild-type
keratinocytes and wild-type fibroblasts was able to generate
abundant hair (Figure 6a and d). However, hair failed to form
in skin reconstituted with either Fuz�/� keratinocytes and
wild-type dermal cells (Figure 6b and e) or wild-type
keratinocytes and Fuz�/� dermal cells (Figure 6c and f).
Interestingly, as observed in Fuz�/� transplants, there were a
few hairs that formed at the edge of the grafts (Figure 6b). Hair
follicles that formed in skin reconstituted with wild-type cells
contained normal-appearing ciliated cells (Figure 6g and h).
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In contrast, only the epidermal components of the hair
follicle-like structures formed by wild-type keratinocytes and
Fuz�/� dermal cells were ciliated (Figure 6i); and only the
dermal cells of skin reconstituted by Fuz�/� keratinocyte and
wild-type dermal cell were ciliated (Figure 6j). The hair
follicle-like structures formed in the latter only contained a
few normal-appearing ciliated cells in the dermal component
(Figure 6k and l). These skin reconstitution assays showed

that hair follicle formation requires the expression of Fuz in
both epidermal and dermal cells. In addition, we show that
primary cilia formed normally in the epidermal or dermal
components isolated from wild-type mice, but not in the
components isolated from Fuz mutant skin; thus documenting
that the formation of primary cilia is a cell-autonomous
process that does not require cross talk between the
epithelia and mesenchymal compartments during hair follicle
formation.

DISCUSSION
Previous studies of the PCP functions in mouse hair follicle
development have focused on core PCP genes such as Fzd6,
Celsr1, or Vangl2. Disruption of any one of these genes
resulted in abnormal hair follicle orientation (Guo et al.,
2004; Devenport and Fuchs, 2008; Ravni et al., 2009). The
disruption of Fuz, a PCP effector gene, resulted in the delay
and arrest of hair follicle development, a phenotype that has
not previously been associated with PCP genes. Because
vertebrate animals have acquired more sophisticated deve-
lopmental processes and have even more PCP genes than
Drosophila (Wang and Nathans, 2007), it is not surprising
that different PCP components participate in distinctive
developmental processes, especially in a tissue- or organ-
specific manner.

Disruption of the Fuz gene has been shown to affect
ciliogenesis in Xenopus and mice (Park et al., 2006; Gray
et al., 2009; Heydeck et al., 2009). In mice, cilia formation
on Meckel’s cartilage cells, mesenchymal cells of the
notochord and limb buds, and other cell types was not
completely abolished in the absence of Fuz, suggesting that
other PCP effector genes, such as Intu (Zeng et al., 2010) and
Frtz, might have compensated for the loss of Fuz. In mouse
skin, both epidermal keratinocytes and dermal fibroblasts are
ciliated (Figure 3; Lehman et al., 2008, 2009). The presence
of cilia on dermal fibroblasts has been shown to be essential
for hair follicle morphogenesis (Lehman et al., 2009). In this
study, we show that Fuz is required for primary cilia
formation in both cell types. Disruption of cilia formation in
either cell type blocked the formation of hair follicles.
Interestingly, our skin reconstitution assays show that primary
cilia form normally in the epidermal or dermal components
isolated from wild-type mice, but not in the components
isolated from Fuz mutant skin; thus documenting that the
formation of primary cilia is a cell-autonomous process that
does not require cross talk between the epithelia and
mesenchymal compartments during hair follicle formation.
Most of the cilia observed in Fuz�/� cells were stunted;
however a few cells contained cilia that appeared to be of
normal length. This might explain the partially penetrant hair
follicle phenotype in Fuz�/� mice, which allows hair follicles
to form, but ultimately arrest at different stages of morpho-
genesis. Because Fuz�/� epidermis exhibited normal differ-
entiation patterns, we speculate that primary cilia may not be
required for processes involved in epidermal differentiation.

Primary cilia are essential for the transduction of Hh
signals during tissue morphogenesis, homeostasis, and
tumorigenesis (Wong and Reiter, 2008). The decreased

Figure 5. Hair follicles failed to grow in Fuz�/� skin transplants. (a, b) Gross

appearance of E18.5 embryonic back skin of wild-type (a) and Fuz�/� mice

(b) grown on nude mice for 3 weeks. Note that long and dense hair grew on

the wild-type skin transplant (a); the Fuz�/� skin transplant was pigmented,

however, only a few short hair developed at the edge of the transplant

(b). (c, d) Hematoxylin and eosin staining of wild-type (c) and Fuz�/�

(d) skin transplants. Some hair follicles at the edge of Fuz�/� skin transplant

(indicated by arrow) were able to develop further (d). (e and g) Cilia were

labeled as in Figure 3. Most cells in the hair follicle of the wild-type skin

transplant contained cilia (e) in comparison to only a small percentage

of ciliated cells were present in the Fuz�/� skin transplants (g). (f and h)

Expression of Krt14 (red) and Krt71 (green) in anagen hair follicles of

wild-type (f) and Fuz�/� (h) skin transplants. (i and j) Expression of Krt14

(red) and Lor (green) in wild-type (i) and Fuz�/� (j) skin transplants. Scale

bar¼ 100 mm in (c and d), 50mm in (f, h, i and j), 25 mm in (e and g).
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expression of Ptch1 and Gli2 measured in Fuz�/� skin could
be partially explained by the overall reduction in the number
of hair follicles; however, we suggest that decreased Hh
signaling is primarily due to the impaired formation of

primary cilia. In this regard, the arrested development of
hair follicles in Fuz�/� mice partially phenocopied the
hair phenotypes of mutants whose Shh signaling was
entirely disrupted (St-Jacques et al., 1998; Chiang et al., 1999;

a b c

d

g

h

k l

i j

e f

Figure 6. Hair follicle formation required the expression of Fuz in both epidermal and dermal cells. (a–c) Gross appearance of skin grafts reconstituted

with wild-type keratinocytes and wild-type dermal cells (a), Fuz�/� keratinocytes and wild-type dermal cells (b), or wild-type keratinocytes and Fuz�/�

dermal cells (c). (d–f) Hematoxylin and eosin staining of skin sections of corresponding grafts in (a–c). Note that the center of the skin grafts reconstituted

with Fuz�/� cells (e and f) contained abnormally formed hair follicle structures. (g) Cilia were present on follicular and dermal papilla cells in hair follicles

formed with wild-type cells. (h) Higher magnification of cropped area in (g). (i) Hair follicle-like structures that were formed by wild-type keratinocytes

and Fuz�/� dermal cells only contained ciliated cells in the epidermal component, not the dermal component. (j) Dermal cells in skin grafts reconstituted

by Fuz�/� keratinocytes and wild-type dermal cells contain cilia. (k) Cilia were only detectable in dermal papilla cells in a hair follicle formed by Fuz�/�

keratinocytes and wild-type dermal cells. (l) Higher magnification of cropped area in (k). Dotted lines in k and l outline the dermal papillae. The antibodies

used to detect primary cilia (Arl13b, green) and basal bodies (g-tubulin, red) were the same as used in Figure 3. Cilia on epidermal cells are indicated by arrows;

cilia in dermal cells are indicated by open arrows. Scale bar¼ 500mm in (d�f), 25 mm in (g�l).
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Mill et al., 2003). However, in Fuz�/� skin, the few hair
follicles were able to develop to a later stage in Fuz�/� skin
before arresting, suggesting that the few normal-appearing cilia
may be able to partially transduce Hh signals. In addition, the
formation of relatively normal-appearing hair follicles at
the edge of mutant skin grafts may have allowed the cilia
that formed in the absence of Fuz to more efficiently process
Hh signals as a result of the release of the Shh ligand from the
adjacent host skin.

In summary, unlike members of the core PCP family, Fuz
is important in the formation of primary cilia on epidermal
keratinocytes and dermal fibroblasts, both of which are
required for Hh signaling during hair follicle morphogenesis.
Thus, different PCP genes may function in an orchestrated
manner but exert distinctive effects during hair follicle
formation. It will be intriguing to know if the simultaneous
disruption of both core PCP and PCP effector genes will result
in a combination of hair follicle polarization and morpho-
genesis defects, or reveal even more complex epistatic
interactions controlled by PCP genes during skin and hair
follicle development in mice.

MATERIALS AND METHODS
Animals

Mutant Fuz mice were generated at the Texas Institute of Genomic

Medicine and housed at the Institute of Biosciences and Technology

at Texas A&M Health Sciences Center and the University of

Colorado Denver vivariums. Nulligravid heterozygous Fuz (Fuzþ /�)

females were mated overnight with heterozygous males and

examined for the presence of vaginal plugs the following morning.

The onset of gestation was considered to be at 22:00 hours of the

previous night. All animal procedures were approved by the

institutional animal care and use committees at both Texas A&M

Health Sciences Center and University of Colorado Denver.

Immunofluorescence labeling and microscopy

To perform immunofluorescence labeling, paraffin sections were

deparaffinized, rehydrated, and heated at 100 1C in 10 mM sodium

citrate (pH 6.0) for 10 minutes as an antigen retrieval step. To label

primary cilia, 0.1 mM EDTA (pH 8.0) was used in place of sodium

citrate. Frozen sections were used for Vangl1 labeling. Sections were

incubated with primary antibodies in 10% BSA at 4 1C overnight.

The following primary antibodies were used: P-cadherin (Invitrogen,

Carlsbad, CA), Krt10 and Krt14 (Yuspa et al., 1989), Krt71 (K6irs1, a

gift from Dr Shimomura), Lor (Mehrel et al., 1990), acetylated a-

tubulin and Vangl1 (Sigma, St Louis, MO), and Arl13b (a gift from

Tamara Caspary). Secondary antibodies were Alexa-conjugated

fluorochrome 594 or 488 anti-IgG to the corresponding host species

of the primary antibodies (Molecular Probes, Eugene, OR). Photo-

graphs were taken with a Nikon Eclipse 90i microscope in

conjunction with the NIS-Elements AR 3.0 imaging software (Nikon,

Melville, NY) or on a Zeiss LSM 510 META laser scanning confocal

microscope and analyzed on ZEN 2009 interface (Carl Zeiss,

Thornwood, NY).

Skin transplantation and skin graft reconstitution assays

Full-thickness skin transplantation was performed following proce-

dures described elsewhere (St-Jacques et al., 1998; Chiang et al.,

1999) except that skins were placed in silicon chambers with an

interior diameter of 6 mm and analyzed 3 weeks thereafter. Skin graft

reconstitution assays were performed as described by Lichti et al.

(2008). Different portions of wild-type and Fuz�/� epidermal cells

(1� 106) and freshly isolated dermal cells (2� 106) were combined

and seeded into silicon chambers with a 4 mm interior diameter.

Reconstituted skins were collected 4 weeks after grafting.

All experiments were performed at least four times.

Statistics

The Student’s t-test was used to calculate statistically significant

differences. Po0.05 was considered statistically significant.
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